Gradients of the polarization energy in the effective fragment potential method.
نویسندگان
چکیده
The effective fragment potential (EFP) method is an ab initio based polarizable classical method in which the intermolecular interaction parameters are obtained from preparative ab initio calculations on isolated molecules. The polarization energy in the EFP method is modeled with asymmetric anisotropic dipole polarizability tensors located at the centroids of localized bond and lone pair orbitals of the molecules. Analytic expressions for the translational and rotational gradients (forces and torques) of the EFP polarization energy have been derived and implemented. Periodic boundary conditions (the minimum image convention) and switching functions have also been implemented for the polarization energy, as well as for other EFP interaction terms. With these improvements, molecular dynamics simulations can be performed with the EFP method for various chemical systems.
منابع مشابه
Polarization energy gradients in combined quantum mechanics, effective fragment potential, and polarizable continuum model calculations.
A method that combines quantum mechanics (QM), typically a solute, the effective fragment potential (EFP) discrete solvent model, and the polarizable continuum model is described. The EFP induced dipoles and polarizable continuum model (PCM) induced surface charges are determined in a self-consistent fashion. The gradients of these two energies with respect to molecular coordinate changes are d...
متن کاملA Study of Water Clusters Using the Effective Fragment Potential and Monte Carlo Simulated Annealing
Simulated annealing methods have been used with the effective fragment potential to locate the lowest energy structures for the water clusters (H2O)n with n=6, 8, 10, 12, 14, 16, 18, and 20. The most successful method uses a local minimization on each Monte Carlo step. The effective fragment potential method yielded interaction energies in excellent agreement with those calculated at the ab ini...
متن کاملAn Effective Fragment Method for Modeling Solvent Effects in Quantum Mechanical Calculations
An effective fragment model is developed to treat solvent effects on chemical properties andreactions. The solvent, which might consist of discrete water molecules, protein, or othermaterial, is treated explicitly using a model potential that incorporates electrostatics,polarization, and exchange repulsion effects. The solute, which one can most generally envision as including some number of so...
متن کاملAnalysis of Low-Frequency Passive Seismic Attributes in Maroun Oil Field, Iran
Nowadays, viable and cost-effective methods play a vital role in hydrocarbon exploration up to the point that geoscientists cannot rule out the importance of the passive seismic method (PSM) in oil exploration operations. This method is based on seismic energy, which has a natural source. This study focuses on seismic energy anomaly of 1-6 Hz. Some researches show that spectral and polarization...
متن کاملEvidence of the Potential Shift Mechanism in Crevice Corrosion (RESEARCH NOTES)
Previous research has indicated a qualitative resemblance between the current distribution along actively corroding crevice walls and currents measured in corresponding anodic polarization plots. Using detailed measurements of the potential gradient along the crevice, a semi-quantitative current distribution was calculated for the crevice wall using a double numerical differentiation method. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 125 19 شماره
صفحات -
تاریخ انتشار 2006